A teraz co by było gdyby kula do kręgli była tak ciężka, że zakrzywiłaby płótno trampoliny do tego stopnia, że z zagłębienia zrobiłaby się studnia bez dna? Wszystko co wpadłoby po trampolinie do takiej studni owszem, dotarłoby do kuli, ale płótno byłoby tak zakrzywione, że nic nie mogłoby się od tej kuli wydostać. Czym masywniejsze ciało, tym większe zagłębienie w niewidzialnej tkaninie. Ta elegancka koncepcja zmieniła rozumienie wszechświata, jednocześnie rodząc wiele nowych, nurtujących pytań. Wśród nich jedno, wyjątkowo fascynujące: co otrzymamy, gdy skupimy niewiarygodnie wielką masę w maleńkim punkcie? Otrzymamy czarną dziurę!
No dobrze. Ale nadal nie wiemy skąd się takie masywne skurczybyki w kosmosie biorą!
Sam pomysł istnienia takich miejsc w kosmosie budził silny sceptycyzm ówczesnych naukowców. Obliczeń podjął się jako pierwszy Karl Schwarzschild, astrofizyk zainteresowany geometrią wszechświata. Zajmując się coraz mniejszymi punktami w przestrzeni, Niemiec napotykał spore problemy. Normalnie, gdy zbliżamy się do jakiegoś obiektu dwukrotnie, to siła grawitacji wzrasta czterokrotnie – zgodnie z prawem powszechnego ciążenia. Równania ogólnej teorii względności wskazywały jednak na niezwykły i zatrważający wniosek – odpowiednie zagęszczenie materii, przekraczające pewną krytyczną granicę, powoduje, że siła grawitacyjna dla tej materii staje się nieskończona! Dziś tego typu ewenement nazywamy osobliwością – miejscem, w którym standardowo rozumiana fizyka traci sens.
Schwarzschild obliczył, że każde ciało może osiągnąć taki stan, o ile zostanie zgniecione do odpowiednio małych rozmiarów. Po przekroczeniu tej granicy, praktycznie niemożliwym jest powstrzymanie dalszego zapadania się obiektu w samym sobie. W ten sposób astrofizyk jako pierwszy przewidział powstanie „zmarłej gwiazdy” (oficjalnie po raz pierwszy sformułowania „czarna dziura” użył na konferencji z 1967 roku John Wheeler). Dla naszego Słońca promień Schwarzschilda wynosi najwyżej kilkanaście kilometrów. Oznacza to, że skurczenie jego masy, do rozmiarów niewielkiej planetoidy, zaowocuje nieposkromionym zapadaniem się w sobie, bez możliwości odwrotu. Długość promienia krytycznego, będzie proporcjonalnie uzależniona od masy obiektu. Niewielkie ciało, wielkości Ziemi, trzeba by zmiażdżyć do rozmiarów paru centymetrów, aby stało się czarną dziurą. Nie powinno nas dziwić, iż przez długie lata uznani profesorowie zgodnie twierdzili, że w przyrodzie nie ma miejsca na tego typu fizyczne wynaturzenia. W 1939 Einstein napisał: Logiczny jest wniosek o nieistnieniu osobliwości Schwarzschilda w fizycznej rzeczywistości.
Dziś wiemy, że Albert Einstein był w błędzie i nie docenił potencjału własnej teorii. Otwarty pozostawał problem, co musi się stać, aby osobliwość Schwarzschilda rzeczywiście powstała. Tylko jedna kategoria obiektów w kosmosie posiada wystarczający potencjał, aby wiązać z nią narodziny czarnych dziur – gwiazdy. Niczym ogromne piece termojądrowe spalają biliony ton wodoru, zamieniając go na coraz cięższe pierwiastki. Przez cały ten czas, trwa siłowanie między termicznym ciśnieniem rozsadzającym gwiazdę, a grawitacją próbującą ją zmiażdżyć. Ostatecznie dochodzi do momentu wyczerpania paliwa, gdy powstaną pierwiastki, z których reakcje jądrowe nie zdołają wykrzesać więcej energii. W dalekiej przyszłości czeka to wszystkie gwiazdy, jedne po milionach, inne po miliardach lat. Czym mniejsza gwiazda, tym spokojniejszy i, paradoksalnie, dłuższy jej żywot. Przeciętne w tej skali Słońce znajduje się mniej więcej w połowie swojej egzystencji, a jego końca należy się spodziewać nie wcześniej niż za 4 miliardy lat.
Czarne dziury powstają przy okazji znacznie efektowniejszej śmierci, która spotyka największe gwiazdy. Mowa tu o hiperolbrzymach jak Rigel czy Betelgeza, osiągających masę kilkunastokrotnie większą od naszego Słońca. Metabolizm gigantycznych gwiazd pozwala na nieco więcej, a ich koniec należy do najdramatyczniejszych wydarzeń jakie spotykamy w kosmosie.
Początek tego procesu przebiega analogicznie w przypadku wszystkich gwiazd. Gdy kończy się paliwo jądrowe temperatura spada, a wraz z nią bijące na zewnątrz ciśnienie. Grawitacja zaczyna dominować, naciskając coraz bardziej na jądro. Miażdżona materia ulega degeneracji, ponieważ cząstki elementarne znajdując się tysiące razy bliżej niż normalnie, zaczynają drgać w sposób niekontrolowany. Fizycy zajmujący się mechaniką kwantową zwracają uwagę, że zdegenerowane elektrony zachowujące się częściowo jak fale o bardzo krótkich długościach (z braku miejsca), noszą ponadprzeciętnie wielką energię. To tak zwane ciśnienie degeneracji elektronów. Hinduski noblista Subramanyan Chandrasekhar obliczył, że jeżeli zapadająca się w ten sposób gwiazda nie przekracza masy 1,4 Słońca, to powstanie swojego rodzaju status quo między oddziaływaniem grawitacji a ciśnieniem degeneracji elektronów. Owocem tej równowagi będzie gęsty i blado świecący biały karzeł o średnicy zbliżonej do Ziemi. Chandrasekhar spodziewał się, że cięższych gwiazd nie czeka tak łagodny scenariusz. Białe karły uważane w pierwszej połowie XX wieku za coś niezwykłego, miały się okazać niczym szczególnym w porównaniu z tym co dopiero czekało na odkrycie. Znawca tematu teorii względności Artur Eddinhton skomentował te wnioski: Mogą nastąpić rozmaite wydarzenia, które uratują gwiazdę, lecz ja chcę pewniejszej ochrony. Uważam, że powinno być jakieś prawo przyrody, dzięki któremu owo absurdalne zachowanie gwiazdy staje się niemożliwe! To już drugi raz, kiedy cieszący się wielką sławą naukowiec nie chciał przyjąć do wiadomości, że natura potrafi wymknąć się poza standardowe postrzeganie wszechświata. Mimo sprzeciwu legendy brytyjskiej astronomii, teoria Chandrasekhara zyskała poparcie.
Wróćmy raz jeszcze do kończącego swój żywot hiperolbrzyma. Po wypaleniu swojego podstawowego ładunku – wodoru – musi się zadowolić helem, a następnie coraz cięższymi pierwiastkami – tlenem, węglem, magnezem, siarką, neonem, krzemem i tak dalej. Gwiazda posila się w najlepsze, aż do powstania w jej wnętrzu atomów żelaza. Pierwiastek ten działa niczym trutka, gwałtownie przerywając procesy termojądrowe. Na jądro zaczyna oddziaływać gigantyczna siła grawitacji, tak wielka, że ciśnienie degeneracji elektronów jego materii nie wystarcza do zahamowania procesu zgniatania. W tym czasie, zewnętrzne warstwy gwiazdy błyskawicznie spadają do środka, co powoduje „odbicie” z monstrualną energią. Dochodzi do eksplozji, która wstrząsa niebiosami – supernowej. W ułamku sekundy wytwarzana jest energia tysiące razy większa niż nasze Słońce wypromieniuje w ciągu całej swojej egzystencji. Gdy tego typu katastrofa przydarzyła się w odległości ponad 7 tysięcy lat świetlnych, wybuch był widoczny na naszej planecie nawet w dzień, a promieniowanie zostawiło ślad w rdzeniu lodowym Antarktyki. We wnętrzu piekła supernowej następuje ostateczny triumf grawitacji – poddane gigantycznemu ciśnieniu jądro zapada się w sobie tworząc czarną dziurę.
Bestia wsysa siłą grawitacji wszystko w swoim pobliżu. I na nic zdadzą się schrony antyczarnodziurowe w piwnicach pod schodami.
CDN
P.S. Zmieniłem trochę pismo i tło. Uważam że tak wygodniej się mnie czyta. I przyjemniej.
P.S.2 Zawsze czyta się mnie przyjemnie.